[讨论]平菇用水大家谈
<p>最近有网友建议我写一下平菇用水的一些技术话题,确实论坛网友种植平菇的很多,而科学用水对平菇的高产如否起到很重要的作用,同时也关系到平菇病害的防治。我一个人能力有限,论坛种植平菇的高手诸如天宇、发酵罐、蕈苑、平菇叶等很多,欢迎大家就这个问题发表一下见解,让更多的网友受益,是本帖的目的。为了便于帖子的管理,我把它放到菌业综论栏目,以防一些恶意马甲的捣乱,请大家理解。</p><br/>
<p>我们知道平菇是没有特殊的吸水器官和蒸腾器官,不过根据平菇的生长环境和形态变化,可以发现两种生理现象,其一,平菇必须从环境中吸收水分;其二,要消耗大量的水分保持平菇和外界的联系,保持细胞中水分的平衡和营养物质的运转,促进平菇的生长发育。【陆续上传我的观点】</p>
水分胁迫
<h1> </h1><div id="lemmaContent"> 水分胁迫<br/>
<div class="spctrl"></div> water stress<br/>
<div class="spctrl"></div> 水分胁迫(water stress)植物水分散失超过水分吸收,使植物组织含水量下降,膨压降低.正常代谢失调的现象。<br/>
<div class="spctrl"></div> 植物除因土城中缺水引起水分胁迫外,干旱、淹水、冰冻、高温或盐演条件等不良环境作用于植物体时,都可能引起水分胁迫。不同植物及品种对水分胁迫的敏感性不同,影响不一。在淹水条件下,有氧呼吸受抑制,影响水分吸收,也会导致细胞缺水失去膨压,冰冻引起细胞间隙结冰,特别是在严重冰冻后遇晴 天,细胞间隙的冰晶体融化后又因蒸腾大量失水,易引起水分失去平衡而姜蔫。高温及盐演条件下亦易引起植物水分代谢失去平衡,发生水分胁迫。干旱缺水引起 的水分胁迫是最常见的,也是对植物产量影响最大的。水分胁迫对植物祝谢的影响在植物水分亏缺时,反应最快的是细胞伸长生长受抑制,因为细胞膨压 降低就使细胞伸长生长受阻,因而叶片较小,光合面积减小;随着胁迫程度的增高,水势明显降低,且细胞内 脱落酸(ABA)含量增高,使净光合率亦随之下降,另一方面,水分亏缺时细胞合成过程减弱而水解过程加强,淀粉水解为糖,蛋白质水解形成氨基酸,水解产物又在呼吸中消耗;水分亏缺初期由于细胞内淀粉、蛋白质等水解产物增亥,吸呼底物增加,促进了呼吸,时间稍长,呼吸底物减少,呼吸速度即降低,且因氧化碑酸化解联,形成无效呼吸,导致正常代谢进程紊乱,代谢 失调。水分胁迫对植物的严重影:由于水分胁迫引起植物脱水,导致细胞膜结构破坏。在正常情况下,由于细胞膜结构的存在,植物细胞内有一定的区域化 (compartmentation),不同的代谢过程在不同的部位进行而彼此又相互联系;如果膜结构破坏就引起代谢紊乱。不同植物或品种对水分胁迫的反应不同植物或品种在干早条件下的反应不同。早生植物长期生活在干早的环境中,在生理或形态上具有一定的适应特性。例如具有强大的根系,燕腾量高时。可吸收深层土中的水分,这是一种积极的抗旱方式。有的角质层发达,避免水分过多散失或气孔夜开昼闭等避免水分散失。如仙人掌,白天气孔关闭减少水分消耗量,夜间气孔张 开,吸收的CO2,固定于苹果酸中,白天又释放出CO2, 用于光合作用中。 <br/><br/>栽培植物的抗旱性虽不及旱生植物,但不同植物或品种之间对水分胁迫的敏感性亦不同,一般C.植物 比C:植物的水分利用率高,抗旱性亦较强,C;植物中 高粱的抗旱性又比玉米强。在水分亏缺时,高粱叶片中的ABA含量明显低于玉米,干旱后复水,高粱亦较玉米易于恢复正常。 在生产上应注意合理施肥,提高植物杭早性的间题,例如钾有渗透调节功能,在施肥时应适当配合钾肥,发挥其渗透调节功能,提高作物抗旱性。</div>
水孔蛋白
<br/><h1> </h1>
<div id="lemmaContent"> 在原生质膜和液泡膜中存在一些蛋白,它们起着选择性水通道的作用,这些蛋白被称为水孔蛋白或称为水通道蛋白.<br/>
<div class="spctrl"></div> 水孔蛋白属于整合膜蛋白中的家族.水孔蛋白构成选择性水分通道.它们允许水分自由通过,有些水孔蛋白也允许小分子的非电解质通过,但排斥离子,如玉米中的并不能让甘油,胆碱,脲以及氨基酸通过,虽然水孔蛋白能让水分通过,但并不起泵的作用.这种水分运动的驱动力在本质上是水压或渗透压在植物体中,水孔蛋白存在于液泡膜中(如玉米中)和拟南芥中,也存在于原生质膜中,如烟草中、拟南芥中。</div> <p>有理论有实践!<br/>再顶各位老师!</p> <div class="msgheader">QUOTE:</div><div class="msgborder"><b>以下是引用<i>陈昭</i>在2010-1-28 10:59:18的发言:</b><br/>
<p> Chaumont F, Moshelion M, Daniels MJ. Regulation of plant aquaporin activity. <i>Biol Cell</i>, 2005, <b>97</b>(10): 749-764.</p>
<p> Ishikawa F, Suga S, Uemura T, <i>et al</i>. Nover type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in <i>Arabidopsis thaliana</i>. <i>FEBS Lett</i>, 2005, <b>579</b>: 5814-5820.</p>
<p> Ishibashi K. Aquaporin subfamily with unusual NPA boxes. <i>Biochim Biophys Acta,</i> 2006, <b>1758</b>: 989-993.</p>
<p> <a href="http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kaldenhoff%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract" target="_blank">Kaldenhoff R</a>, <a href="http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Fischer%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract" target="_blank">Fischer M</a>. Functional aquaporin diversity in plants. <i>Biochim Biophys Acta</i>, 2006, <b>1758</b>: 1134-1141.</p>
<p> Jang JY, Kim DG, Kim YO, <i>et al</i>. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in <i>Arabidopsis thaliana</i>.<i> Plant Mol Biol</i>, 2004,<b> 54</b>: 713-725.</p>
<p> Schlosser J, Olsson N, Weis M, <i>et al.</i> Cellular expansion and gene expression in the developing grape (<i>Vitis vinifera</i> L). Protoplasma.doi:10.1007/s00709-008-0280-9, 2008.</p>
<p> Shiota H, Sudoh T, Tanaka I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. <i>Plant Sci</i>, 2006, <b>171</b>: 277-285.</p>
<p> Liu D, Zhang X. Gene cloning: exploring cotton functional genomics and genetic improvement. <i>Front Agric China</i>, 2008,<b> 2</b>: 1-9.</p>
<p> Liu D, Zhang X, Tu L, <i>et al.</i> Isolation by suppression- subtractive hybridization of genes preferentially expressed during early and late fiber development stages in cotton. <i>Mol Bio</i>, 2006, <b>l40</b>: 825-834.</p>
<p> Tu L, Zhang X, Liu D,<i> et al</i>. Suitable internal control genes for QRT-PCR normalization in cotton fiber development and somatic embryogenesis. <i>Chin Sci Bull</i>, 2007, <b>52</b>: 3110-3117.</p>
<p> Eisenbarth DA, Weig AR. Dynamics of aquaporins and water relations during hypocotyl elongation in <i>Ricinus</i> <i>communis</i> L. seedlings.<i> J Exp Bot</i>, 2005, <b>56 </b>(417): 1831-1842.</p>
<p> Harmer SE, Orford SJ, Timmis JN. Characterisation of six alpha-expansin genes in <i>Gossypium hirsutum</i> (upland cotton).<i> Mol Gen Genom</i>, 2002, <b>268</b>: 1-9.</p>
<p> Fetter K, Van Wilder V, Moshelion M, <i>et al</i>. Interactions between plasma membrane aquaporinsmodulate their water channel activity. <i>Plant Cell</i>, 2004, <b>16</b>: 215-228.</p>
<p> Ruan YL, Llewellyn DJ, Furbank RT. The control of single-called cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K<sup>+</sup> transporters and expansion. <i>Plant Cell</i>, 2001, <b>13</b>: 47-60.</p>
<p> Arpat AB, Waugh M, Sullivan JP, <i>et al</i>. Functional genomics of cell elongation in developing cotton fibers. <i>Plant Mol Biol</i>, 2004, <b>54</b>: 911-929.</p>
<p> Peng Y, Lin W, Cai W, <i>et al.</i> Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic <i>Arabidopsis</i> plants.<i> Planta</i>,<i> </i>2007, <b>226</b>: 729-740.</p>
<p> Martínez-Ballesta MC, Silva C, López-Berenguer C, <i>et al</i>. Plant aquaporins: New perspectives on water and nutrient uptake in saline environment. <i>Plant Biol</i>, 2006, <b>8</b>: 535-546.</p>
<p> Boursiac Y, Chen S, Luu DT, <i>et al</i>. Early effects of salinity on water transport in <i>Arabidopsis</i> roots, molecular and cellular features of aquaporin expression.<i> Plant Physiol</i>, 2005, <b>139</b>: 790-805.</p>
<p> Seki M, Narusaka M, Ishida J. Monitoring the expression profiles of 7000 <i>Arabidopsis</i> genes under drought, cold and high-salinity stresses using a full-length Cdna microarray. <i>Plant</i>, 2002, <b>31</b>: 279-292.</p>
<p> Luu DT, Maurel C. Aquaporins in a challenging environment: Molecular gears for adjusting plant water status. <i>Plant Cell Environ</i>, 2005,<b> 28</b>: 85-96.</p>
<p> Alleva K, Niemietz CM, Maurel C, <i>et al</i>. Plasma membrane of <i>Beta vulgaris</i> storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. <i>J Exp Bot</i>, 2006, <b>57</b>: 609-621.</p>
<p> Ionenko IF, Anisimov AV, Karimova FG. Water transport in maize roots under the influence of mercuric chloride and water stress: A role of water channels. <i>Bio Plant</i>, 2006, <b>50</b>: 74-80.</p>
<p> Cabaňero FJ, Martínez-Ballesta MC, Teruel JA, <i>et al</i>.<i> </i> New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants. <i>Plant Cell Physiol</i>, 2006, <b>47</b>: 224-233.</p>
<p> Trofimova, Tournaire-Roux C, Sutka M,<i> et al. </i>Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. <i>Nature</i>, 2003, <b>425</b>: 393-397.</p>
<p> Martínez-Ballesta MC, Aparicio F, Pallas V, <i>et al</i>. Influence of saline stress on root hydraulic conductance and PIP expression in <i>Arabidopsis</i>. <i>Plant Physiol</i>, 2003, <b>160</b>: 689-697.</p>
<p> Tornroth-Horsefield S, Wang Yi, Hedfalk K, <i>et al</i>. Structural mechanism of plant aquaporin gating. <i>Nature</i>, 2006, <b>439</b>: 688-694.</p>
<p> Babourina O, Leonova T, Shabala S, <i>et al</i>. Effect of sudden salt stress on ion fluxes in intact wheat suspension cells.<i> Ann Bot Lond</i>, 2000, <b>85</b>: 759-765.</p>
<p> Halperin SJ, Lynch JP. Effects of salinity on cytosolic Na<sup>+</sup> and K<sup>+</sup> in root hairs of <i>Arabidopsis thaliana</i>: <i>in vivo</i> measurements using the fluorescent dyes SBFI and PBFI. <i>Exp Bot</i>, 2003, <b>54</b>: 2035-2043.</p>
<p> Kobae Y, Mizutani M, Segami S, <i>et al</i> Immunochemical analysis of aquaporin isoforms in <i>Arabidopsis</i> suspension-cultured cells. <i>Biosci Biotech Bioch</i>, 2006, <b>70</b>: 980-987.</p>
<p> E Neutze R, Kjellbom P. Structural mechanism of plant aquaporin gating. <i>Nature</i>, 2006,<b> 439</b>: 659-688.</p>
<p> Flexas J, Ribas-Carbó M, Hanson DT, <i>et al. </i>Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO<sub>2</sub> <i>in vivo</i>.<i> Plant</i>, 2006, <b>48</b>: 427-439.</p>
<p> Hanba YT, Shibasaka M, Hayashi Y, <i>et al</i>. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO<sub>2</sub> conductance and CO<sub>2</sub> assimilation in the leaves of transgenic rice plants.<i> Plant Cell Physiol</i>, 2004,<b> 45</b>: 521-529.</p>
<p> Vera-Estrella R, Barkla BJ, Bohnert HJ,<i> et al. </i>Novel regulation of aquaporins during osmotic stress. <i>Plant Physiol</i>, 2004,<b> 135</b>: 2318-2329.</p>
<p> Katsuhara M, Akiyama Y, Koshiok, <i>et al</i>.<i> </i>Functional analysis of water channels in barley roots. <i>Plant Cell Physiol</i>, 2002, <b>43</b>: 885-893.</p>
<p> Katsuhara M, Shibasaka M. Barley root hydraulic conductivity and aquaporins expression in two sequence subgroups with differential aquaporin activity. <i>Plant Physiol</i>, 2007, <b>122</b>: 1025-1034.</p>
<p> Chaumont F, Barrieu F, Jung R, <i>et al</i>. Chrispeels MJ plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. <i>Plant Physiol</i>, 2000, <b>122</b>: 1025-1034.</p>
<p> Katsuhara M, Koshio K, Shibasaka M,<i> et al</i>. Over-expression of a barely aquaporin increased the shoot/root ratio and raised salt sensitivity of transgenic rice plants.<i> Plant Cell Physioil</i>, 2003, <b>44</b>: 1378-1383.</p>
<p> Bray EA. Genes commonly regulated by water-de?citstress in <i>Arabidopsis thaliana</i>. <i>Exp Bot</i>, 2004, <b>55</b>: 2331-2341.</p>
<p> Terashima I, Ono K. Effects of HgCl<sub>2</sub> on CO<sub>2</sub> dependence of leaf photosynthesis: Evidence indicating involvement of aquaporins in CO<sub>2</sub> diffusion across the plasma membrane. <i>Plant Cell Physiol</i>, 2002, <b>43</b>: 70-78.</p>
<p> Uehlein N, Lovisolo C, Siefritz F, <i>et al</i>. The tobacco aquaporin NtAQP1 is a membrane CO<sub>2 </sub>pore with physiological functions. <i>Nature</i>, 2003, <b>425</b>: 734-737.</p>
<p> Bienert GP, M?ller AL, Kristiansen KA, <i>et al</i>.<i> </i>Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.<i> J Biol Chem</i>, 2007, <b>282</b>: 1183-1192.</p>
<p> Ma JF, Tamai K, Yamaji N, <i>et al</i>. Silicon transporter in rice. <i>Nature</i>, 2006, <b>440</b>: 688-691.</p>
<div id="lemmaContent"> </div></div>
<p><font face="Verdana" color="#da2549"><b>陈昭版主你发帖很热情,但是我想考研的话也看不懂啊,我真不是跟你作对。</b></font></p>
<p>水份代谢对平菇生产的意义:平菇体内细胞水份与外界环境的水份交换,保持了细胞内的水份平衡,同时也加速了对营养物质的吸收和积累,有利于平菇的生长发育和提高子实体的产量。实际栽培时,接种之前培养料有足够的含水量,在培养料的营养物质相当充足的条件下,菌丝体生长旺盛,吸收作用增强,同时消耗大量的水份,增强了菌丝细胞的吸水能力,因而造成培养料含水量的减少,一旦含水量降低,进入培养料的空气就增多,又加速了培养料水份的蒸发,此时,虽然限制了对营养物质的吸收和利用,但是细胞的吸水力却增大了,因此应多喷洒水以湿润培养料。喷水量越多(注意:喷水不能超过培养料的最适含水量)子实体的发生量就越多,同时随着子实体的长大,水分的散发量也越大,故应随时补充水份,因此,及时补充适宜的水份是促进子实体发育和提高子实体产量的重要措施。</p> 我的观点是尽量用能调控的微喷控制好棚内湿度,通风过程中湿度不能低于湿度下限、以免引起菌袋脱水降低转化率,加湿过程中湿度不能饱和以免菌丝受伤降低活力引发病害,湿度始终在合理范围内,另外就是出菇方式,既要满足大量菇蕾的生长空间、也要避免出菇点的水分散失。<br/> 菌袋内部的原始水分是非常珍贵的,相比之下空间(补充)的水分是廉价的。加大培养料里的水分很容易出问题,所以子实体的发育和高产关键在于用好空间(补充)水分。
<p>平菇的水份散失主要靠蒸腾作用,平菇没有特殊的排水器官,水分是通过菌丝和子实体的表面细胞逸散体外。平菇在菌丝生长阶段也有水分的散失,但主要是依靠子实体表面细胞的蒸腾作用,促进了菌丝的吸水和体内水份的运转。平菇蒸腾作用的结果,使整个菌体的代谢活动处于运动状态。首先由于蒸腾作用增强了菌体细胞的吸水,其次蒸腾引起水份在菌体各部位的运转,维持了机体各部位细胞水份达到的饱和状态,这就保持了原生质胶体的正常状态。可见蒸腾作用对平菇的生命活动具有十分重要的意义。但是过量的蒸腾作用却是有害的,水份的大量散失,细胞吸水供不应求,细胞内的水份平衡受到破坏,使菌丝处于生理干旱的状态,这种不正常的生理状态如持续比较长的时间,将会引起菌体萎缩而死亡。</p>
<p>影响平菇吸水的因素主要有温度、通气量和水质等,温度包括培养料的温度和栽培场所的温度,两者会互相影响,但培养料的温度对吸水影响更大。平菇是好气性真菌,生活环境的通气状况与平菇细胞的吸水有密切关系。通气良好的环境能促进菌丝体的生长和子实体的发育;通气不良将引起菌丝生长停滞,子实体不易分化和萎缩。在实际生产中,固体培养料太湿,平菇菌丝生长停留在表层,不易深入蔓延,其实并非是因为培养基(料)水份过多,而是由于培养基(料)内部的通气性差,防碍了菌丝细胞吸水的原故。水质是指水中矿物质的成份和含量,栽培平菇宜用自来水,山间的清水和干净的河水。海水、石炭岩流出的水、盐碱土壤里渗出的水以及锈水田里的水,往往含有大量的矿物质,或是含有对平菇有毒害的物质,采用这种水质配制培养基或喷洒正在生长的子实体,会造成培养基(料)中的矿物质浓度过高引起菌丝细胞内渗透压下降,使细胞内的水份往外渗出,导致菌丝生长稀少,子实体的发生很少并萎缩,有的由于中毒引起子实体畸形和腐烂。</p> 不好办啊,哪能控制的这么好啊